
Question A3 

 

Proposition: Suppose that f and g are continuous functions on [0, 1] and that there exists x0   [0, 1] 

such that f(x0)   g(x0).  Prove that                   
 

 
.  

 

Proof: Let f(t) and g(t) be continuous functions on the closed interval [0,1].  

Let h(t) = f(t) – g(t). 

 

Proof that h(t) is continuous: 

As f(t) is continuous, then, using the delta-epsilon definition of continuity, for any a in the domain [0,1] 

and for any positive ε, there exists δ1 such that if |t-c| < δ1, then  

(1):      |f(t) – f(c)| < ε. 

 

As g(t) is continuous,  then, using the delta-epsilon definition of continuity, for any a in the domain 

[0,1] and for any positive ε, there exists δ2 such that if |t-c| < δ2, then  

|g(t) – g(c)| < ε, which is also equivalent to  

(2):      |-g(t) + g(c)| < ε. 

 

Choose δ to be the minimum of δ1 and δ2. Now we can say that if |t-a| < δ, then (by adding the two 

previous equations (1) and (2)) we get: 

 |f(t) – f(c)| + |-g(t) + g(c)| < + ε. 

    

By the triangle inequality, |f(t) – f(c)| + |-g(t) + g(c)| ≥ |(f(t) – g(t)) – (f(c) - g(c))|. 

 

Therefore |(f(t) – g(t)) – (f(c) - g(c))| < 2ε.  

       |h(t) – h(c)| < 2ε.  

Therefore the function h(t) is also continuous. 

 

Proof of proposition: 

Let x0 be a number in the domain [0, 1] such that f(x0) is not equal to g(x0). 

h(t) = f(t) – g(t) is continuous as shown above. 

 

Choose ε = |h(x0)/2|. As |h(t)| is continuous then there exists δ such that |h(x0)-h(x)| < |h(x0)/2| for all x in 

(x0- δ, x0+ δ). That is, all points h(x) in (x0- δ, x0+ δ) are positive, using the definition of continuity. 

 

Now let us choose b in the domain [0, 1] under the following conditions: 

b < (|δ|)/2, 

and 
 

 
= z, where z is an integer. 

 

Every continuous function on a closed, bounded interval is Riemann integrable. We have chosen b such 

that if we take the lower sum of the Riemann integral on the continuous function h(t), with a partition 

with width b, there will be at least one positive interval between x0- δ and x0+ δ. 

 

Because |h(t)| ≥ 0 for all values of t in [0, 1], the lower sum of all other intervals is greater than or equal 

to zero. Therefore the lower sum of all intervals must be greater than zero. 

 

Therefore             
 

 
, because the corresponding lower Riemann sum > 0,  and the integral is 

bounded by its upper and lower Riemann sums. 

 

Therefore, if there exists x0   [0, 1] such that f(x0)   g(x0), then                   
 

 
. The proof is 

complete. 
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Question B2 

 

Proposition: If Ω1 and Ω2 are closed sets in R
n
, show using the definition, that Ω1   Ω2 is closed. 

Proof: Let Ω1 and Ω2 be closed sets in R
n
. The complement of the union of Ω1 and Ω2 is equal to the 

intersection of their complements Ω1
c
 and Ω2

c
, by De Morgan’s Law. Thus we can prove the union of 

Ω1 and Ω2
 
is closed by proving that the intersection of the complements is open. 

By the definition of a closed set, the complement of Ω1 (denoted Ω1
c
) is open, and similarly the 

complement of Ω2 (denoted Ω2
c
) is open.  

Let x1 in R
n
 be a point in the intersection of Ω1

c
 and Ω2

c
 (denoted Ω1

c
   Ω2

c
). 

 

By the definition of an open set, all points x1 in the open set Ω1
c
 are interior points of Ω1

c
 and similarly 

all points x1 in the open set Ω2
c
 are interior points of Ω2

c
. Therefore for all points x1 in Ω1

c
   Ω2

c
, there 

exists ε1>0 such that the ball around x1 with radius ε1 (denoted by B(x1, ε1)) is a subset of Ω1
c
. Similarly, 

for all points x1 in Ω1
c
   Ω2

c
, there exists ε2>0 such that B(x1, ε2) ⊂ Ω2

c
. 

 

Choose εmin to be the minimum of ε1 and ε2. Then B(x1, εmin) ⊂ B(x1, ε1), and B(x1, ε1) is a subset of 

Ω1
c
. Therefore B(x1, εmin) ⊂ Ω1

c
. Similarly, B(x1, εmin) ⊂ B(x1, ε2) and B(x1, ε2) ⊂ Ω2

c
. Therefore B(x1, 

εmin) ⊂ Ω2
c
. 

 

Therefore as B(x1, εmin) is a subset of both of the sets Ω1
c 
and Ω2

c
, B(x1, εmin) is also a subset of their 

intersection, Ω1
c
   Ω2

c
. Therefore x1 is an interior point of Ω1

c
   Ω2

c
, and as x1 is arbitrary, this means 

every x1 in Ω1
c
   Ω2

c
 is an interior point. Therefore, by definition, Ω1

c
   Ω2

c
 is an open set.  

As Ω1
c
   Ω2

c
 is an open set, by set theory its complement must be closed. The complement of Ω1

c
   Ω2

c
 

is equal to Ω1   Ω2, by De Morgan’s Law 

Therefore Ω1   Ω2 is closed, when Ω1 and Ω2 are closed sets in R
n
. The proof is complete. 

 

De Morgan’s theorem: 

Given A and B, subsets of a set X: 

(A   B)
c
 = A

c
   B

c
                and (A   B)

c
 = A

c
   B

c
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