MATH3161 Optimisation

Nathan Wilson

June 6, 2014

Minimum Cost Pizza Problem

Using only the items given in the tables below (See Appendix A, Assignment Sheet), create a minimum cost pizza which satisfies both the nutritional requirements of Table 1 and bounds on item quantities given in Table 2. Use the nutritional data of Table 3 and the cost data of Table 4 in your model.

Solution Summary

The minimum cost pizza calculated using the model below costs \$2.40, and consists of the following ingredients:

Ingredient	Quantity(grams)	
Dough	425.6	
Sauce	113.5	
Cheese	170.3	
Ham	99.3	
Onion	90.333	
Mushrooms	92.2	
Green Pepper	8.967	

Table 1: Ingredient Quantities

Model formulation

Objective

Our objective is to minimize total cost of ingredients.

Let $x_i = x_1, \dots, x_n$ be the quantity of each ingredient i in hundreds of grams.

Let $c_i=c_1,\,\dots,\,c_n$ be the cost of ingredient x_i per 100 grams.

The cost of the pizza is equal to the sum of the costs of each ingredient, which can be represented by the objective function:

$$f = \sum_{i=1}^{12} c_i x_i \tag{1}$$

As f is a linear function it is convex and therefore is a valid linear optimisation problem.

Equality Constraints

This problem does not have any equality constraints.

Inequality Constraints

We are given a number of constraints that can be represented via linear equations.

Bounds on quantities of Ingredients:

Let ingredient in_i, i=1..12 be

i	in_i
1	Cheese
2	Sauce
3	Dough
4	Pepperoni
5	Ham
6	Bacon
7	Green Pepper
8	Onion
9	Celery
10	Mushrooms
11	Tomatoes
12	Pineapple

Table 2: Ingredient indices

Let nutrient $n_i,\,i{=}1..8$ be

i	n_i
1	Calcium
2	Iron

- $i \quad n_i$
- 3 Protein
- 4 Vitamin A
- 5 Thiamine
- 6 Niacin
- 7 Riboflavin
- 8 Vitamin C

Table 3: Nutrient indices

We are given a table of upper and lower bounds on ingredient quantities which can be represented in a series of inequality constraints g(x). In standard form these are:

$$-x_1 + 1.703 <= 0 (2)$$

$$x_1 - 2.270 <= 0 (3)$$

$$-x_2 + 1.135 <= 0 (4)$$

$$x_2 - 1.986 <= 0 (5)$$

$$-x_3 + 4.256 <= 0 (6)$$

$$x_3 - 5.249 <= 0 (7)$$

$$x_4 - 0.993 <= 0 \tag{8}$$

$$x_5 - 1.135 <= 0 (9)$$

$$x_6 - 0.993 <= 0 \tag{10}$$

$$x_7 - 1.561 <= 0 \tag{11}$$

$$x_8 - 0.993 <= 0 (12)$$

$$x_9 - 1.561 <= 0 \tag{13}$$

$$x_{10} - 1.135 \le 0 \tag{14}$$

$$x_{11} - 1.703 <= 0 \tag{15}$$

$$x_{12} - 1.703 <= 0 (16)$$

$$-x_4, -x_5, -x_6, -x_7, -x_8, -x_9, -x_{10}, -x_{11}, -x_{12} \le 0 (17)$$

Three more constraints also refer to bounds on 'classes' of ingredient, where the classes are Meat, Vegetables, and Fungi. The ingredient set in each class was not given, so assumptions have been made as follows:

Category	Ingredient
Meat	Pepperoni, Ham, Bacon
Vegetables	Green Pepper, Onion, Celery
Fungi	Mushrooms

Table 4: Ingredient classes

Hence:

$$0.993 - x4 - x5 - x6 <= 0 \tag{18}$$

$$0.993 - x7 - x8 - x9 <= 0 (19)$$

$$0.993 - x10 <= 0 \tag{20}$$

Note that as tomato and pineapple are both technically fruits, they were not included in these constraints.

All g(x) are convex as they are linear functions, thus the constraints represent a valid linear optimisation problem in standard form.

Bounds on quantities of Nutrients:

The amount of a nutrient q_i (as defined in Table 3 above) can be calculated by:

$$f(i) = \sum_{j=1}^{8} n_{i,j} x_j \tag{21}$$

$$f(i) = n_1 x_1 + n_2 x_2 + n_3 x_3 + n_4 x_4 + n_5 x_5 + n_6 x_6 + n_7 x_7 + n_8 x_8$$
 (22)

where n_j is the quantity of nutrient q_i for x_j per 100grams. Obtained from Appendix A, Table 3. In Appendix A, Table 1, we are given minimum requirements r_i for each nutrient q_i . We can represent these requirements as inequality constraints using the formula above where $f(x) >= r_i$.

In standard form, this is:

$$-1 * \sum_{j=1}^{8} n_{i,j} x_j <= -r_i, \forall i \in 1, ..., 8$$
 (23)

Both sides have been multiplied by -1 to get the inequality into standard form.

Definition of problem variables

The cost per 100g for each ingredient:

$$C = \begin{bmatrix} 46.6\\ 35.24\\ 9.63\\ 44.11\\ 44.05\\ 44.27\\ 25.10\\ 5.33\\ 14.14\\ 31.20\\ 22.03\\ 25.98 \end{bmatrix} . \tag{24}$$

Matrix of nutrient quantity per ingredient (where the final three rows represent the ingredient class constraints):

Minimum nutrient quantities:

$$b = -1 * \begin{bmatrix} 750 \\ 12 \\ 48.5 \\ 4500 \\ 1.3 \\ 16 \\ 1.6 \\ 30 \\ 0.993 \\ 0.993 \\ 0.993 \\ 0.922 \end{bmatrix} . \tag{26}$$

Upper and lower bounds on ingredients:

$$xlb = \begin{bmatrix} 1.703 \\ 1.135 \\ 4.256 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \tag{27}$$

$$xlb = \begin{bmatrix} 2.270 \\ 1.986 \\ 5.249 \\ 0.993 \\ 1.135 \\ 0.993 \\ 1.561 \\ 0.993 \\ 1.561 \\ 1.135 \\ 1.703 \\ 1.703 \\ 1.703 \end{bmatrix} . (28)$$

Computer Output

>> ss14

Optimization terminated.

Minimum cost of pizza: \$2.399160

Quantity of Cheese: 170.300 grams Sauce: 113.500 grams Quantity of Quantity of Dough: 425.600 grams Quantity of Pepperoni: 0.000 grams Quantity of Ham: 99.300 grams Bacon: 0.000 grams Quantity of Quantity of Green Pepper: 8.967 grams Onion: 90.333 grams Quantity of Quantity of Celery: 0.000 grams Quantity of Mushrooms: 92.200 grams Tomatoes: 0.000 grams Quantity of Quantity of Pineapple: 0.000 grams

Portfolio Selection Problem

An individual with \$10,000 to invest has identified three mutual funds as attractive opportunities. Over the last five years, dividend payments (in cents per dollar invested) have been as shown in Table 5, Appendix A, and the individual assumes that these payments are indicative of what can be expected in the future. This particular individual has two requirements: (1) the combined expected yearly return from his/her investments must be no less than \$800 (the amount \$10,000 would earn at 8 percent interest) and (2) the variance in future, yearly, dividend payments should be as small as possible. How much should this individual invest in each fund to achieve these requirements?

Solution Summary

Following the imposed requirements, given total assets of \$10,000 he should invest his money as below:

Investment	%	Amount
1	10.14%	\$1013.78
2	63.29%	\$6328.74
3	26.57%	\$2657.48

In order to achieve a minimum possible variance of 1.812402.

Model formulation

Objective

Our objective is to minimise the variance of future yearly dividend payments. This can be represented by the function as given (Appendix A):

$$f(x_1, x_2, x_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} \sigma_{ij}^2 x_i x_j$$
 (29)

where x_1, x_2, x_3 are the proportion to invest in each investment respectively.

Equality Constraints

This problem does not have any equality constraints.

Inequality Constraints

We are given several requirements that can be represented as inequality constraints.

Minimum Expected Return

First we are told that the yearly return from dividends must be greater than or equal to \$800, or the value earned at 8 percent interest. The expected return for each investment is calculated from Table 5 using the equation:

$$E_i = 1/5 \sum_{k=1}^{5} x_{ik} \tag{30}$$

where x_{ik} denotes the return per dollar invested from investment i during the kth time period in the past (k = 1, 2, ..., 5).

The calculated values from Table 5 gave:

	Investment 1	Investment 2	Investment 3
% Return	9	7	10

Hence the expected return must be greater than or equal to 8%:

$$0.09x_1 + 0.07x_2 + 0.1x_3 >= 0.08 \tag{31}$$

or in standard form:

$$-0.09x_1 - 0.07x_2 - 0.1x_3 <= -0.08 (32)$$

Bound on Total Investment

We must also introduce a constraint to represent the fact he cannot invest more than 100% of his assets. In some areas of finance it is possible to do this, but we are given the fact that the investments are mutual funds, and you cannot short stock on a mutual fund. Therefore we may assume that the total investment must be less than or equal to 100%:

$$x_1 + x_2 + x_3 <= 1 \tag{33}$$

We also place upper and lower bounds on $x_{1,2,3}$ to to represent the fact it is a proportion:

$$-x_1, -x_2, -x_3 <= 0 (34)$$

$$x_1, x_2, x_3 <= 1 \tag{35}$$

Computer Output

>> qp14

Optimization terminated.

Minimum variance on future yearly dividend payments: 1.812402

Proportion to invest in Investment 1: 10.1378% Proportion to invest in Investment 2: 63.2874% Proportion to invest in Investment 3: 26.5748%

Appendix A

Please see attached.

Appendix B

Problem 1 Code

```
1 % MATH3161/MATH5165 - Optimization
2 % Script to solve Assignment Question 1 - Minimal cost pizza
3 % Nathan Wilson
4 % z3287546
6 format compact
7 %format short e
9 % Objective gradient (semi-colons; for column vector)
10 g = [46.6; %cheese]
      35.24; %sauce
11
      9.63; %dough
44.11; %pepperoni
12
13
      44.05; %ham
14
      44.27; %bacon
15
      25.10; %green pepper
16
17
      5.33; %onion
      14.14; %celery
      31.20; %mushrooms
      22.03; %tomatoes
      25.98]; %pineapple
21
labels = cell(12,1);
24 labels{1} = 'Cheese';
  labels{2} = 'Sauce';
  labels{3} = 'Dough';
  labels{4} = 'Pepperoni';
27
28 labels{5} = 'Ham';
29 labels{6} = 'Bacon';
30 labels{7} = 'Green Pepper';
31 labels{8} = 'Onion';
32 labels{9} = 'Celery';
33 labels{10} = 'Mushrooms';
34 labels{11} = 'Tomatoes';
35 labels{12} = 'Pineapple';
37
  % General linear constraints (by rows)
38 A = [-517.7 -14 -18.233 -10 -9.031]
                                            -13
                                                    -9.459
      -27.273 -40
-.222 -1.8
                              -13.333 -12.016;
                      -6
                      -3.826 -2.5 -2.291
                                           -1.189
                                                    -.675
39
           -0.545 -0.250 -0.800 -0.533
                                            -.310;
        -20 -2 -14.224 -15 -14.692 -8.392
                                                    -1.351
40
           -1.818 0 -3
                                  -1.333 -0.387;
                                                    -209.46
        -3000 -800 0
                           0 0
                                            0
41
                        0
                                   -450
           -18.182 -125
                                            -25.194;
```

```
-.022 -0.1
                        -0.586
                                 0
                                        -0.74
                                                 -0.361
                                                          -0.081
42
                      -0.025 -0.100
                                       -0.066
                                                 -0.081;
            -0.363
                        -8.852 -2
                                        -4.009
                                                 -1.828
                                                          -0.540
               -1.4
43
            -0.545
                      -0.5
                              -4.3
                                       -0.8
                                                 -0.193;
         -0.244 -0.060 -0.628 0
                                        -0.178
                                                 -0.114
                                                          -0.081
44
                      -0.025 -0.460
            -0.036
                                       -0.04
                                                 -0.019;
45
                         0
                                        0
                                                 0
                                                          -127.03
            -10
                      -10
                               -3
                                       -22.667
                                                 -6.977;
   \% meats >= 0.993
46
   % veg >= 0.993
47
   % fung >= 0.992
48
                                                 -1
                                                          0
49
        0
                 0
                         0
                                        -1
            0
                      0
                               0
                                       0
                                                 0;
        0
                 0
                                       0
                                                 0
                                                          -1
50
                               0
                                       0
                                                 0;
                      -1
            -1
        0
                 0
                                  0
                                       0
                                                 0
                                                          0
                         0
51
            0
                      0
                               -1
                                       0
                                                 0;
52
53
       ];
54
   b = [-750; \%calcium]
55
        -12; %iron
56
         -48.5;%prot
57
         -4500;% vitamin a
58
         -1.3; %Thiamine
59
60
         -16; %Niacin
         -1.6; %Riboflavin
61
         -30; %Vitamin C
62
         -0.993;%Meats
63
         -0.993;%Veg
64
         -0.922];%Fungi
65
66
67
   % Equality constraints = none
   Aeq = [];
68
   beq = [];
69
70
   \% Simple lower and upper bounds on the variables
71
   xlb = [1.703; 1.135; 4.256; 0; 0; 0;
           0;
                  0;
                         0;
                                 0];
   xub = [2.270; 1.986; 5.249; 0.993; 1.135; 0.993; 1.561;
       0.993; 1.561; 1.135; 1.703; 1.703];
74
   % Solution x and Lagrange multipliers lm
75
   xlp = linprog(g, A, b, Aeq, beq, xlb, xub);
76
77
78
   %Objective
79
   obj = g'*xlp;
81 fprintf(1,'Minimum cost of pizza: $%f\n', obj/100);
82
```

Appendix C

Problem 2 Code

```
1 % MATH3161/MATH5165 - Optimization
2 % Script to solve Assignment Question 2 - Portfolio
       Selection Problem
3 % Nathan Wilson
4 % z3287546
5 format compact
6 %format short e
8 %Quadratic programming formulation
9 %Hessian of quadratic and gradient at 0
10 G = 2 .* [30 -5.6 23;
11
             -5.6 2.8 -12;
             23 -12 55.2];
g0 = [0; 0; 0];
14 c = [0];
15 %General linear constraints
16 \quad A = [-0.09 \quad -0.07 \quad -0.1;
      1 1 1];
18 b = [-0.08;
        1];
   % No equality constraints for this problem so use empty
      matrices
21 Aeq = [];
22 beq = [];
   % Lower bounds
24 \text{ xlb} = [0; 0; 0];
25 %Upper bounds
26 xub = [1; 1; 1];
27
28 % Solve using Matlab QP routine
29 xqp = quadprog(G, g0, A, b, [], [], xlb, xub);
31
32 % Objective
33 obj = 0.5*xqp'*G*xqp + g0'*xqp + c;
35 fprintf(1,'Minimum variance on future yearly dividend
      payments: %f\n', obj);
36
  for i = 1:length(xqp)
       fprintf(1,'Proportion to invest in Investment %d: %.4f%%
38
            \n', i, xqp(i)*100);
39 end
```