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Introduction
 
Traffic lights are an important part of daily life; they control the efficiency of road travel, 
determining how many seconds are spent wasted in frustration at a badly designed system.
 
Creating an optimally functioning traffic light, which at every time step has the least number of 
cars stopped as possible, will be economically desirable and practically applicable. The learning 
done on this problem will also be relevant to scheduling problems of a similar nature.
 
Our task was divided into 4 parts:
1. Simulate the traffic generation, flow and traffic lights
2. Display the simulation on the screen
3. Control the lights using a fixed change time of 10 time-steps
4. Use a reinforcement learning algorithm to improve on 3.
 
Our project took a reinforcement learning approach, aiming to find a suitable way of defining a 
state and calculating a reward for it such that we could teach the machine to follow the optimal 
path at every step.
 
We were given an initial state, reward function and q-learning parameters, and once we had 
the system working with those we experimented with modifying them all. We tested each as we 
went, adding in parameters to adjust the density of the traffic in order to assist with this, and 
concluded that a slightly modified version of the original settings was actually the most optimal 
for learning. 
 
State:

● closest car position from intersection for horizontal road (0-8, 9 if no cars)
● closest car position from intersection for vertical road (0-8, 9 if no cars)
● light setting (0 green horizontal, 1 green vertical, 2 amber)

Reward:
 -1 if a car is stopped at a red light on either road, 0 otherwise.
 
Q-Learning Parameters:

● Discount factor: gamma = 0.9
● Learning rate: alpha = 0.7
● Epsilon-greedy exploration 0.1

 



Implementation
 
The problem of controlling a set of traffic lights is not an overly hard theoretical problem, and is 
reasonably simple to test. As such the bulk of our work came down to implementation.
 
Scalability and extensibility was a core focus of ours; we were aware of the potential for 
expansion, and we wanted to ensure we could build upon the project without breaking the 
existing functionality. We decided to use Java for the project, for modulisation, and then 
generalised each component as much as possible, to this end.
 
We prioritised getting a console view of the traffic lights working first, in order to enable us to 
see what was happening and debug any problems. Once we had the system set up with the 
recommended 10 second switching, we set to introducing the reinforcement learning.
 
Our learning takes place with reference to the road and a specific traffic light. We tried passing 
in all the cars on the map that were stopped, to see if the global effect would be an effective 
reward measure, but ended up performing local operations on each light. Each light then 
contributes to the q-values that are built up in the learner, so that the learning process is actually 
sped up with the addition of more lights.
 
At each time step an action is selected for each traffic light via the learner - picking the optimal 
algorithm (1-epsilon)% of the time, and a random action the rest. The traffic lights are updated, 
the cars are adjusted based on their velocities, new cars are spawned onto the map and ones 
off the edge of roads are deleted. Once this has happened the update function is called for the 
learner - using the reward of this new state to update the q-Value of the previous one.
 
The number of cars that are stopped on the road at each time step, as well as the total number 
on the road, are tallied for use as a performance measure. 
 
Our q-values are stored in a hashTable to maximise memory efficiency, and we concluded early 
on that we had no need to store or create a ‘state’ object - rather we could reference it merely 
as the index of a cell. We experimented with different definitions of a state, trialling:

● ClosestCar Horizontal Roads, ClosestCar Vertical Roads, Light On/Off
● NumCarsStopped Horizontal Roads (max 9), NumCarsStopped Vertical Roads (max 9), 

Light On/Off
● CanCarMove Horizontal Roads, CanCarMove Vertical Roads, NumCarsStopped 

Horizontal Roads (max 9), NumCarsStopped Vertical Roads (max 9), Light On/Off
 
Each state was developed in order to test a different reward function - experimenting with -
1*numCarsStopped, -20 for congested intersections, and whether to give a positive reward for 
cars moving through the intersection. After much testing and experimenting we concluded that 
the original state and reward function pair was the most effective, and reverted back to that.
 
The system supports multiple traffic lights, amber lights and different traffic densities.



Experimentation

Parameters
We tested all our parameters with the other values set to the initial ones - learning rate: 0.1, 
reward discount: 0.9, epsilon-greedy exploration: 0.1

Learning Rate
We found that the learning rate was marginally more optimal at 0.7, up 0.6 from the original 0.1, 
but that the difference between everything aside from 0 was not statistically significant.

 

 



Discount Factor
We found that the reward discount factor was most optimal at 0.9 - where we originally had 

it.

Epsilon-Greedy Exploration
We found that the epsilon-greedy exploration percentage 
was most optimal at 0.1 - where we originally had 

it.



Results
 
For our experimentation, we chose a ‘reward’ function and a traffic density. We then spent over 
100,000 iterations learning on these parameters. We repeated this process 10 times for each 
combination of parameters, the results are below;
 
The first reward, the most simple one and the one that we originated with was the most effective 
by far. After experimenting on 10 iterations per reward we came to the following results, and 
hence proceeded with Reward 1.
 

Having picked the reward function we experimented with traffic intensity for it specifically, to see 
how it handled it. 
 
Our system has learnt to control traffic lights with 

● an average of 4 cars stopped per second of 0.1 intensity traffic
● an average of 16 cars stopped per second of 0.25 intensity traffic 
● an average of 77 cars stopped per second of 0.4 intensity traffic 
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